Application of carbon nanotubes in polymer electrolyte based fuel cells

نویسندگان

  • Wei Zhang
  • S. Ravi P. Silva
چکیده

Polymer electrolyte based fuel cells (PEFCs) are always in the forefront of fuel cell revolution. Recently a wide variety of application of carbon nanotubes (CNTs) in PEFC components has been exploited. The impetus is to improve the PEFC performance by taking advantages of CNTs’ extraordinary physical, chemical and electronic properties. Herein, we briefly review these efforts with an attempt to obtain a better understanding on the role of CNTs in PEFCs, and this article is structured as the following: the contribution of CNTs is first addressed in terms of improving the mechanical strength and proton conductivity of polymer electrolyte membrane; their role in electrocatalysis is then discussed with respect to facilitating the utilization of noble metal catalysts (platinum) and exploring the platinum-free catalysts; the consideration of CNTs as hydrogen storage materials is also highlighted. Based on the literatures studied, CNTs demonstrate great potential as multifunctional materials in improving PEFC performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes

Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By...

متن کامل

N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free O...

متن کامل

An overview of organic/inorganic membranes based on sulfonated poly ether ether ketone for application in proton exchange membrane fuel cells

Nowadays, proton exchange membrane fuel cells (PEMFCs) are the most promising green energy conversion devices for portable and stationary applications. Traditionally, these devices were based onperfluoro-sulfonic acid electrolytes membranes, given the commercial name Nafion. Nafion is the mostused electrolyte membrane till now; because of its high electrochemical properties su...

متن کامل

A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum

The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2'-(2,6-pyridine)-5,5'-bibenzimidazole]-wrapped multi-walled ...

متن کامل

Dioxygen Adsorption and Dissociation on Nitrogen Doped Carbon Nanotubes from First Principles Simulation

The electronic and materials properties of carbon nanotubes (CNTs), like those of recent discovered graphene and earlier found fullerenes, attracted lots of research interests due to their appealing applications1 in the field of molecular electronics or for the refinement of materials, such as antistatic paints and shieldings, sensor, and catalytic functionality in fuel cells, etc. Like its two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011